This article was downloaded by:

On: 24 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Journal of Liquid Chromatography & Related Technologies

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597273

A Computer Program for the Identification of the Elution Order of Peaks in High Performance Liquid Chromatography

Haleem J. Issaq^a; Karen L. McNitt^a

^a Chemical Carcinogenesis Program NCI-Frederick Cancer Research Facility, Frederick, MD

To cite this Article Issaq, Haleem J. and McNitt, Karen L.(1982) 'A Computer Program for the Identification of the Elution Order of Peaks in High Performance Liquid Chromatography', Journal of Liquid Chromatography & Related Technologies, 5:9,1771-1785

To link to this Article: DOI: 10.1080/01483918208067612 URL: http://dx.doi.org/10.1080/01483918208067612

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A COMPUTER PROGRAM FOR THE IDENTIFICATION OF

THE FLUTION ORDER OF PEAKS IN HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Haleem J. Issag* and Karen L. McNitt

Chemical Carcinogenesis Program NCI-Frederick Cancer Research Facility Frederick, MD 21701

INTRODUCTION

High performance liquid chromatography (HPLC) is a rapidly growing separation technique. Its popularity is due to its relatively low cost, selectivity, ease of operation and the ability to separate different compounds (structurally and chemically), of large and small molecular size. The results can be quantified quickly and easily.

The most difficult aspect of HPLC is the selection of a mobile phase that gives good resolution of the components of a mixture in a reasonable time, with optimum separation. Recently, many research papers have suggested a systematic approach to mobile phase selection for the optimum separation of a mixture, by using statistical methods of analysis. Glajch $\underline{\text{et}}$ $\underline{\text{al}}$ (1) and Issaq $\underline{\text{et}}$ $\underline{\text{al}}$ (2) have used such a technique based on the work of Snee (3) which employed overlaping resolution mapping for the selection of a mobile phase that would give optimal separation. To establish such a mobile phase, the analyst should run 7-10 experiments using different solvent combinations of three

^{*}Author to whom correspondence should be addressed.

Presented in part at the Drug Metabolism Discussion Group Meeting, Plymouth Meeting, PA, May 6, 1982.

TABLE 1

RATIO OF SOLVENT COMBINATIONS USED

Experiment #	1 1	2	3	4	5	6	7	8	9	10
% Solvent A	100	0	0	50	50	0	33	20	20	60
% Solvent B	0	100	0	50	0	50	33	60	20	20
% Solvent C	0	0	100	0	50	50	33	20	60	20

Note: Other solvent combinations may be used; the analyst needs 10 data points. The ratios can be different from those above.

organic solvents (Table 1). The solvents selected, based on Synder's solvent Synder's solvent selectivity triangle (4), should have different chemical properties in order to give different selectivities of the solutes. Belinky (5), on the other hand, used 17 combinations of three solvents to achieve an optimum mobile phase. Laub (6) used the window technique, which was developed for the selection of GC mixed phases, and which would require a minimum of 10 experiments to achieve an optimum mobile phase if three different solvents were used. Others (7-9) have used statistical approaches which in the end led to an isocratic mobile phase that efficiently separated the components of the mixture under study.

Finding a mobile phase that would separate the components of a mixture using statistical, or any other, technique can be time consuming because, in each of the experiments, solvents of different selectivities are used, and this can lead to a different elution orders of the components, (ref. 2 gives a good example). This means that the analyst would have to identify each eluted peak at the end of every experiment. Assuming that a mixture is composed of six components, and that they elute off the column in each of the 10 required experiments in an average of 15 min, it would take a chromatographer approximately 12-15 hours or 2 days to identity the peaks in all 10 experiments.

DuPont (10) have developed the Sentinel System whereby eluted peaks are identified, if there is no peak crossovers, by a statistical technique. The company has not released this information. If peak crossover takes place, standard solutions should be injected and elution times compared to identify the composition of the peaks. In this case, the analyst needs to know if peak crossover takes place, which is difficult to ascertain unless standards are injected and eluted. James (11) described wavelength chromatography for the identification of eluted components, which is based on a multiwavelength monitoring system employing a diode array spectrophotometer. This is undoubtedly an accurate and rapid method, which also requires the use of a computer, and that the solutes should absorb light in the 200-800nm range.

We present here a computer program (Appendix 1) which can identify the peak's elution order, taking into consideration (a) peak reversal; (b) peaks coalescing, i.e. six peaks in one run but five peaks or less in another; and (c) peak splitting, i.e. four peaks in one mobile phase and six in another. The peak elution order identification is based on one final run of the standards. The peaks are identified by the area ratio of each peak compared with the other eluted peaks in that experiment. It is assumed that the peaks are Gaussion and symmetrical, with no peak frontage or tailing. Since absorption is a function of the number of molecules present, the shape of the peak due to diffusion should not affect the area under the peaks. In HPLC the peak which elutes first is sharper than it would be if it eluted last because of diffusion. It is also possible that the extinction coefficient of a compound can change from one solvent to another. Since mixtures of solvents are used this phenomenon is minimized (Table 2).

This computer program is also suited for use with radiolabeled compounds and their metabolites, since the number of counts is directly proportional to the amount of radioactivity. A selected hypothetical example will be presented which illustrates the value of this computer program.

TABLE 2

Effect of Mobile Phase Composition on the % Peak Areas of Anthraquinone (A),
Methylanthraquinone (MA), and Ethylanthraquinone (EA)

	A (%)	MA (%)	EA (%)
CH ₃ CN:H ₂ O / 64:36	22.5	40.6	36.9
CH ₃ OH:H ₂ O / 75:25	22.2	41.1	36.7
THF:H ₂ O / 45:55	23.6	40.7	35.7
CH ₃ OH:CH ₃ CN:H ₂ O / 38:32:30	22.4	40.8	36.7
CH ₃ OH:THF:H ₂ O / 38:22:40	22.8	41.0	36.2
CH ₃ CN:THF:H ₂ O / 32:22:36	22.7	40.8	36.5
CH ₃ OH:CH ₃ CN:THF:H ₂ O / 25:21:15:39	23.3	40.7	36.0
CH ₃ CN:THF:CH ₃ OH:H ₂ O / 42:7.5:12.5:38	23.2	40.0	36.8
CH ₃ CN:THF:CH ₃ OH:H ₂ O / 11:30:12.5:46.5	23.4	41.0	35.6
CH ₃ CN:THF:CH ₃ OH:H ₂ O / 11:7.5:50:31.5	23.1	40.6	36.3

Mean ± Standard Deviation:

 $22.9 \pm 0.5 \quad 40.7 \pm 0.3 \quad 36.3 \pm 0.5$

EXPERIMENTAL

<u>Materials</u>: Solvents were glass distilled (Burdick and Jackson). Chemicals were analytical grade (Aldrich Chemical Co.) and used without further purification.

Apparatus: A modular HPLC system consisting of Laboratory Data Control (LDC) Constametric I and II pumps attached to an LDC Gradient Master, a Chromatronix dual-channel uv absorbance detector, Rheodyne injector, and a strip-chart recorder operated at 0.2 in/min. was used.

The RP-18 reversed phase column (Merck) was 250 mm x 4.6 mm prepacked with 10 μ m particle size materials. 10 π l samples were injected. Experiments were run at room temperature using a mobile phase flow rate of 1.2 ml/min. Retention times, peak areas, and peak area percent were determined with a Hewlett-Packard

1865 A/D converter connected to the UV detector output of the liquid chromatograph. The output from the data system was recorded on a 9866A thermal line printer (Hewlett-Packard).

COMPUTER PROGRAM

The PKSEP program which identifies peaks by peak area percent is written in Basic for a Hewlett Packard 3354 Lab Data System. This system uses a model 2100 CPU with 32 K of core. Currently, the program allows for as many as 12 runs with up to 15 peaks in each run, storing retention times, peak area percents and results of the analysis for each run.

Eluted peaks are identified by comparing the peak area percents of the trial run peaks to those of a standard run. Peak area percents are computed automatically by the HP 3354 Lab Data System. Currently the retention times and area percent for each peak are entered in the program, but the program can be modified to accept the retention time and area percent from the processed data files of each LC analysis.

The run with the most peaks is chosen as the standard. If there are several runs to choose from, the last one entered is used unless the user selects another. The selected run must have the maximum number of peaks.

The analysis for each trial run is as follows. For each trial peak, the standard peak or sum of two peaks which best match the trial peak area percent is chosen. Peak summing is not used at this point if the trial run has the same number of peaks as the standard run. If a standard peak is chosen which defined a previous peak, both trial peak definitions are rechecked and only the better area percent match is kept. If the trial run has the same number of peaks as the standard, standard peaks are not summed in this initial selection. If the area percent of the standard selected differs from the trial by more than 10%, a warning message is printed. Mis-matches of this size will most probably be resolved in the identification of later trial peaks. This initial selection produces no peak identification conflicts, but all trial and standard

peaks may not have been matched. All unused trial peaks are then compared against all unused standards and the best available area percent fit is used, if the areas match by 90% or more. Note that not all standard peaks are forced to match a trial peak due to this 90% requirement. All selected peaks, warning messages and re-defined standards are printed out during the analysis.

A summary report of each trial run in elution order of the standard run is printed out, showing the corresponding trial peak number, retention time and area %, or a message is given to indicate that the standard peak cannot be identified.

Finally a summary table giving the elution order for each run is printed out.

A HYPOTHETICAL EXAMPLE

A mixture containing seven components was selected as an example. The output is listed as follows:

```
ENTER RT, AREA % FOR EACH PEAK FROM RUN 1
 END WITH -1,-1
:? 1.1,6%
:? 2.7,4%
:? 11,20%
:? 21.4,15%
:? 23.7.14%
:? 34,21%
17 37,19%
? -1.-1
ENTER RT, AREA % FOR EACH PEAK FROM RUN 2
  END WITH -1,-1
:? 1.1,20%
:? 11.2,30%
:? 22.3,10%
:? 35.7,40%
:? -1,-1
ENTER RT, AREA % FOR EACH PEAK FRON RUN 3
  END WITH -1,-1
:? 1,10%
:7 12,19.5%
:? 23.2,14.9%
:? 24.7.14.1%
:? 35.7,40%
:? -1,-1
```

```
ENTER RT. AREA % FOR EACH PEAK FROM RUN 4
  END WITH -1,-1
:? 1,5.9%
:? 2.4,4.1%
:? 11.3,30.1%
:? 23.1,14.8%
:? 27.3,14.1%
:? 35.2,20.9%
:? 37.8,19.1%
:7 -1,-1
ENTER RT, AREA % FOR EACH PEAK FROM RUN 5
  END WITH -1,-1
:? 1,5.8%
:? 2.1,4.2%
:? 11.1,20.1%
:? 13.4,14.9%
:? 15.8.14.1%
:? 24.7,21.9%
:7 31.2,18.6%
:? -1,-1
ENTER RT, AREA % FOR EACH PEAK FROM RUN 6
  END WITH -1.-1
:? 1.48%
:? 2.4.6%
:? 13.2,15%
:? 21.7,14%
:? 25.7,17.4%
17 -1,-1
ENTER RT, AREA % FOR EACH PEAK FROM RUN 2
  END WITH -1,-1
:? 1,10%
:? 2.3,20%
:? 3.5,30%
:? 4.8,40%
:? -1,-1
```

These are the seven required runs to perform an optimum solvent mixture analysis using seven different mobile phases. The next step is the analysis of the areas in these seven runs to determine which area belongs to which peak/peaks.

Run # 1 is selected as the standard; it has the maximum number of peaks.

The computer will identify the peaks in the remaining six runs as follows:

```
ANALYSIS FOR RUN #2
             - 20
                                   - 20
                        STD #3
   PEAK #1
               - 30
                                  - 15
   PEAK #2
                                                   - 14
                        STD #4
                                           + #5
                                                           = 29
                                  - 6
                                                   - 4
   PEAK #3
               - 10
                        STD #1
                                          + #2
                                                           ≠ 10
               - 40
                                  - 21
   PEAK #4
                        STD #6
                                          + #7
                                                   - 19
                                                           = 40
```

```
ANALYSIS FOR RUN #3
                                - 6
- 19
                                          + #2
                                                          ≈ 10
    PEAK #1
            - 10
                        STD #1
                                                   - 4
               - 19.5
                        STD #7
    PEAK #2
              - 14.9
                                   - 15
   PEAK #3
                        STD #4
                                 - 14
- 21
   PEAK #4
              - 14.1
                        STD #5
              - 40
                        STD #6
   PEAK #5
                                          + #7 - 19 = 40
   *** REDEFINITION OF STD 7
                                 ***
    PEAK #2
              MAY BE STD #3
ANALYSIS FOR RUN #4
                       STD #1 - 6
STD #2 - 4
STD #6 - 21
   PEAK #1 - 5.9
            - 4.1
- 30.1
   PEAK #2
                      STD #6
   PEAK #3
   ***PEAK AREAS DIFFER BY >10% ***
           - 14.8 STD #4 - 15
- 14.1 STD #5 - 14
- 20.9 STD #6 - 21
   PEAK #4
   PEAK #5
   PEAK #5 - 14.1 STD #5
PEAK #6 - 20.9 STD #6
   *** REDEFINITION OF STD 6
                                 ***
             - 19.1 STD #7 - 19
   PEAK #7
ANALYSIS FOR RUN #5
   PEAK #1 - 5.8
                       STD #1
                               - 6
                                - 4
- 20
              - 4.2
                        STD #2
   PEAK #2
   PEAK #3
            - 20.1 STD #3
                                 - 15
   PEAK #4
              - 14.9 STD #4
             - 14.1 STD #5
- 21.9 STD #6
                               - 14
- 21
- 19
   PEAK #5
   PEAK #6
   PEAK #7
              - 18.6 STD #2
ANALYSIS FOR RUN #6
   PEAK #1 - 48
                        STD #3
                                - 20 + #6 - 21
                                                         = 41
   *** PEAK HAY BE SUN OF 3 OR MORE STDS ***
                                - 6
- 15
- 14
- 4
   PEAK #2 - 6 STD #1
               - 15
    PEAK #3
                        STD #4
             - 14
                        STD #5
    PEAK #4
              - 17.4 STD #2
                                         + #5
                                                   ~ 14 = 18
   PEAK #5
   *** REDEFINITION OF STD 5
                                 ***
   PEAK #5
              MAY BE STD #7
ANALYSIS FOR RUN #7
                                   - 6
            - 10
                        STD #1 - a
STD #3 - 20
STD #4 - 15
STD #6 - 21
                        STD #1
                                          + #2
                                                  - 4
                                                          = 10
    PEAK #1
               - 20
    PEAK #2
           - 30
- 40
                                        + #5 -- 14 == 29
+ #7 -- 19 == 40
   PEAK #3
```

PEAK #4

SUMMARY OF RESULTS

RUN # 2 STD PEAK # 1 -1.1 2 -2.7 3 -11 4 -21.4 5 -23.7 6 -34 7 -37	3 3 1	RT 11 11 1.1 2.7 2.7 21.4 21.4	STD AREA % 6 4 20 15 14 21 19	PEAK AREA % 10 10 20 30 30 40 40
RUN # 3 STB PEAK # 1 -1.1 2 -2.7 3 -11 4 -21.4 5 -23.7 6 -34 7 -37	PEAK # 1 1 2 3 4 5 5 5	RT 1.1 1.1 2.7 11 21.4 23.7 23.7	STD AREA 7 6 4 20 15 14 21	PEAK AREA % 10 10 19.5 14.9 14.1 40 40
RUN # 4 STD PEAK # 1 -1.1 2 -2.7 3 -11 4 -21.4 5 -23.7 6 -34 7 -37	1 2	RT 1.1 2.7 (NOT IDENTIFIE! 21.4 23.7 34 37	STD AREA 7 6 4 15 14 21	PEAK AREA 2 5.9 4.1 14.8 14.1 20.9
RUN # 5 STD PEAK # 1 -1.1 2 -2.7 3 -11 4 -21.4 5 -23.7 6 -34 7 -37	PEAK # 1 2 3 4 5 6 7	RT 1.1 2.7 11 21.4 23.7 34	STD AREA % 6 4 20 15 14 21 19	PEAK AREA % 5.8 4.2 20.1 14.9 14.1 21.9 18.6
RUN # 6 STD PEAK # 1 -1.1 2 -2.7 3 -11 4 -21.4 5 -23.7 6 -34 7 -37	2	RT 2.7 NOT IDENTIFIED 1.1 21.4 1.1 23.7	STD AREA % 6 20 15 14 21 19	PEAK AREA 2 6 48 15 14 48 17.4

RUN	# 7				
SID	PEAK #	PEAK #	RT	STD AREA %	PEAK AREA %
1	-1.1	1	1.1	6	10
2	-2.7	1	1.1	4	10
3	-11	2	2.7	20	20
4	-21.4	3	t 1	15	30
5	-23.7	3	11	14	30
6	-34	4	21.4	21	40
7	-37	4	21.4	19	40

Note that in the analysis of run #3, standard peak 7 was selected as a match to peak 2, then selected again as matching peak 5. Standard peak 3 was not initially selected as matching any trial peak, but was matched to peak 2 when testing all unidentified peaks. However in run #4, standard peak 6 was matched first to peak 3, then to peak 6, and standard, and trial, peak 3 are left unidentified even after testing all unmatched peaks, and is recorded as -1, which means that that peak has not been identified. In this case, the chromatographer will have to use other means to identify that peak.

Currently the program sums only two standard peaks if summing is required. The program can be modified to search for the sum of more than two peaks. If the summed area percent is 10% less than the trial peak area percent, a message such as the one in run #6 is printed, indicating that three or more standard peaks may be represented in the trial peak area.

Finally, the computer will list the summary of the above analysis, in table form, (Table 3).

TABLE 3										
RUN #										
STD	# 1	2	3	4	5	6	7	8	9	10
1	1	3	1	1	1	2	1			
2	2	3	1	2	2	~1	1			
3	3	1	2	-1	3	1	2			
4	4	2	3	4	4	3	3			
5	5	2	4	5	5	4	3			
6	6	4	5	6	6	1	4			
7	7	4	5	7	7	5	4			
BASI	C									
>										

CONCLUSION

A computer program has been written which can identify the peak elution order according to their area percent.

"By acceptance of this article, the publisher or recipient acknowledges the right of the U.S. Government to retain a nonexclusive, royalty-free license in and to any copyright covering the article."

This work was supported by Contract No. NOI-CO-75380, with the National Cancer Institute, NIH, Bethesda, MD 20014.

REFERENCES

- Glajch, J.L., Kirkland, J.J. and Squire, K.M., J. Chromatogr. <u>199</u>, 57 (1980).
- Issaq, H.J., Klose, J.R., McNitt, K.L., Haky, J.E. and Muschik, G.M., J. Liquid Chromatogr. 4, 2091 (1981).
- 3. Snee, R.D., Chem. Tech. 9, 702 (1979).
- Snyder, L.R., J. Chromatogr. Sc. 92, 223 (1974).
- Belinky, B.R., Analytical Technology and Occupational Health Chemistry, ACS Symposium Series, Volume 220, pp 149-168, American Chemical Society, Washington, DC, 1980.
- Laub, R.J., Am. Laboratory 13(3), 47 (1981).
- Lindberg, W., Johansson, E. and Johansson, K., J. Chromatogr. <u>211</u>, 201 (1981).
- Guiochon, G. and Colin, H., Pittsburgh Conf. on Anal Chem. and Appl. Spectrosc., Atlantic City, 1981.

9. Sachok, B., Kong, R.C. and Deming, S.N., J. Chromatogr. 199, 317 (1980).

- 10. Sentinel System, DuPont Technical Report, USA, 1981.
- 11. James, G.E., Hewlett Packard, Washington, DC. Publication No. 23-5943-4792 (1981).

APPENDIX - Program Listings

```
10 BIM AC1803, TC1803, PC1803, NC123
20 DEF FNZ(X)=INT(100*X+.5)/100
   PRINT
   PRINT "PEAK IDENTIFICATION BY AREA PROGRAM - 4/82"
40
50
   PRINT
60
      FOR I=1 TO 180
70
      LET PEID=-1
      NEXT I
80
90
   LET M≖0
100
    LET I=1
    LET NI=0
110
120
    LET T2=0
130
    PRINT
     PRINT "ENTER RT, AREA % FOR EACH PEAK FROM RUN ";I
140
     PRINT " END WITH -1,-1"
150
       FOR J=1 TO 15
160
       PRINT ":";
170
       INPUT TI,A1
180
185
       LET K=(I-1)*15+J
190
       IF T1+A1<0 THEN 290
210
       IF T10T2 THEN 240
220
       PRINT "PEAKS OUT OF ORDER"
230
       GOTO 110
240
       LET TEKJ=T1
250
       LET T2=T1
260
       LET ALK3=A1
270
       LET N1=N1+1
280
       NEXT J
290
     IF NICH THEN 320
300
     LET M=N1
310
     LET It=I
320
     IF N1<1 THEN 360
330 LET NCID=N1
340 LET I=I+1
350
    IF I<13 THEN GOTO 110
360 LET N5=1-1
370 PRINT
```

850

NEXT K

```
380 PRINT "RUN # "; I1:" USED AS STANDARD"
390 PRINT "OKAY";
400 INPUT NS
410 IF N$[1,1]#"N" THEN 440
420 PRINT "RUN # OF STD ":
430
    INPUT II
440 LET N2=NEI13
    IF M=N2 THEN 480
450
460 PRINT "< MAXIMUM # OF PEAKS IN RUN ";11
470 GOTO 420
480 LET 19=(I1-1)*15
490
     FOR K=1 TO N2
500
       LET PEI9+K3=K
510
       NEXT K
520 LET A[19+N2+1]=0
     FOR K=1 TO N5
530
540
      IF K=I1 THEN 850
     LET K9=(K-1)*15
550
     PRINT
560
      PRINT "ANALYSIS FOR RUN #";K
570
580
      LET NI=NEKJ
        FOR J=1 TO N1
590
600
        LET M=1000
610
        LET A2=A[K9+J]
620
          FOR I=1 TO N2
630
          LET K8=I+1
640
          IF N2=N1 THEN LET K8=N2+1
650
             FOR I2=K8 TO N2+1
660
            G09UB 1620
            NEXT I2
620
680
          NEXT I
690
        LET A8=ACI9+K1]
700
        LET A9=A[19+K2]
710
        LET A1=A8+A9
720
        PRINT "
                  PEAK #";J;"- ";A2;TAB(25);
        IF K2>N2 THEN 770
730
740
        PRINT "STD #";K1;"- ";A8;"+ #";K2;"- ";A9;"= ";A1
        IF A2>1.1*A1 THEN PRINT " *** PEAK MAY BE SUM OF 3 OR NORE STDS ***"
750
760
        GOTO 790
770
        PRINT "STD #";K1;"- ";AC19+K1]
780
        IF M/A2>.1 THEN PRINT " ***PEAK AREAS DIFFER BY >10% ***"
790
        GDSUB 1150
800
        IF F>0 THEN 830
810
        LET P[K9+K1]=J
820
       LET P[K9+K2]=J
830
        NEXT J
     GOSUB 1390
840
```

```
860 PRINT
    PRINT "SUMMARY OF RESULTS"
880
       FOR I=1 TO N5
890
       IF I=I1 THEN 1010
900
       PRINT
       PRINT "RUN # ":I
910
920
       PRINT "STD PEAK #
                            PEAK #
                                              RT
                                                         STD AREA %
       PRINT " PEAK AREA %"
930
940
         FOR J=1 TO N2
         LET K8=(I-1)*15
950
960
         LET J1=P[K8+J]
970
         LET J2=I9+J
980
         IF J1KO THEN PRINT J:"-":FNZ(TEJ21):TAB(20):"- PEAK NOT IDENTIFIED"
         IF J1>0 THEN PRINT J:"-":FNZ(TCJ23):TAB(20):J1.TCJ13,ACJ23.ACK8+J13
990
1000
         NEXT J
        NEXT I
1010
1020 PRINT
1030
     PRINT
     PRINT "
1040
                                     RUN #"
     PRINT "STD # 1
                       2
                                3
                                            5
                                                      7
                                                                         10"
1050
                                                             8
                                                                   9
        FOR I≈1 TO N2
1060
1070
        PRINT
1080
        PRINT I:
         FOR J=1 TO N5
1090
          PRINT PE(J-1)*15+13;
1100
1110
          NEXT J
        NEXT I
1120
1130 STOP
1140 REM **FIND REDEFINED PEAK - WHICH USE IS BETTER FIT
1150 LET F=0
1160 LET K8=N2+1
1170 LET J1=PEK9+K13
1180 LET I2=K1
1190 IF J1>0 THEN 1240
1200 LET J1=PEK9+K23
1210 LET I2=K2
1220
      IF J1>0 AND K2 <= N2 THEN 1240
1230
      RETURN
      PRINT "
1240
               *** REDEFINITION OF STD ":12:"***"
1250
        FOR K5=1 TO N2
        IF K5=12 THEN 1280
1260
1270
        IF PEK9+K53=J1 THEN LET K8=K5
1280
        NEXT K5
1290 LET A8=A[19+12]
1300 LET A9=ACI9+K8]
1310 LET A1=A8+A9
1320 IF ABS(A1-AUK9+J13)<M THEN 1360
1330 LET P[K9+12]=-1
1340 LET P[K9+K8]=-1
1350 RETURN
1360
      LET F=1
1370 RETURN
```

```
1380 REM **FIND UNDEFINED PEAKS - DO ANY MATCH
       FOR J=1 TO N1
1400
          FOR I=1 TO N2
          IF P[K9+1]=J THEN 1590
1410
1420
          NEXT I
1430
      LET N=1000
       LET A2=A[K9+J]
1440
1450
       LET PEK9+N2+13=-1
1460
          FOR I=1 TO N2
1470
          IF PEK9+13>0 THEN 1520
1480
           FOR 12=1+1 TO N2+1
1490
            IF PEK9+123>0 THEN 1510
1500
           GOSUB 1620
           NEXT 12
1510
1520
          NEXT I
1530
       IF N/A2>.1 THEN RETURN
        PRINT " PEAK H"; J; " MAY BE"; TAB(25);
1540
       IF K2 <= N2 THEN PRINT "STD #";K1;" + #";K2
1550
       IF K2>N2 THEN PRINT "STD #";K1
1560
1570
       LET PEK9+K13=J
1580
       IF K2<N2+1 THEN LET PCK9+K23=J
1590
       NEXT J
1600 RETURN
1610 REN **DIFFERENCE IN AREA ROUTINE
1620 LET A1=A[19+1]+A[19+12]
1630 LET D=ABS(A1-A2)
1640 IF D>H THEN RETURN
1650 LET M=D
1660 LET K1=I
1670 LET K2=I2
1680 RETURN
1690 END
```